Benefits and Risks of OPV Use

Olen Kew, Ph.D.

Division of Viral Diseases

National Center for Immunization and Respiratory Diseases

Centers for Disease Control and Prevention

Polio Immunization: Moving Forward NIAID/NIH Bethesda 19–20 September 2007

OPV: Advantages

- Main tool for global polio eradication
- Confers mucosal (intestinal) immunity
- Suitable for mass campaigns
 - Synchronous immunity
 - Outbreak responses
 - Door-to-door immunization campaigns
- Easy to deliver
 - Even children can give OPV doses
- Inexpensive

OPV: Disadvantages

- Poor immunogenicity in highest risk areas
- Interference between Sabin strains in tOPV
- Vaccine-associated paralytic poliomyelitis
 (VAPP): 250–500 cases/yr worldwide
 - Essentially uniform risk anywhere OPV used
 - OPV recipients: ~1 case/750,000 first OPV doses
 - Cases in unimmunized OPV contacts
- Risk of VDPV emergence

VDPVs

- Circulating VDPVs (cVDPVs)
 - Main risk factor: immunity gaps from low OPV coverage and absence of natural immunity
- Immunodeficiency-associated VDPVs (iVDPVs)
 - Primary B-cell (Ab) immunodeficiencies
 - T-cell immunodeficiencies (e.g., HIV-1 infection) apparently not a risk factor
 - iVDPVs rare even among immunodeficients
 - Effective therapies needed
- Ambiguous VDPVs (aVDPVs)
 - Provisional assignment; VDPV source unknown
 - Environmental isolates not linked to any patient
 - Isolates from patients with no known immunodeficiency
 - Single VDPV isolates (no known outbreak)

Shared Properties of VDPV Isolates

	iVDPVs	cVDPVs	aVDPVs
Associated with polio in humans	Usually ^a	Yes	Someb
Neurovirulent in Tg-CD155 mice	Yes ^c	Yes	Yes ^c
Loss of key attenuating substitutions	Yes	Yes	Yes
Replicate at 39.5 C	Yes	Yes	Yes
Antigenic divergence from Sabin parent	Yes	Yes ^d	Yesd

- a Some iVDPVs isolated from immunodeficient carriers
- ^b Some aVDPVs from the environment or healthy carriers
- ^c When tested
- d Antigenic divergence may not occur with all type 2 VDPVs

Distinguishing Properties of VDPV Isolates

	iVDPVs	cVDPVs	aVDPVs
Sabin/HEV-C recombination	No	Usually ^a	Some
Sabin/Sabin recombination	Some	Some ^b	Some
Isolates have diverse mixed populations	Some	No	Some
Person-to-person transmission	Rarely found ^d	Yes ^c	Rarely found ^d

^a Includes all isolates from EGY, HAI-DOR, PHL, MAD, INO, MMR outbreaks and most from NIE outbreak

- b cVDPV from LAO
- ^c Closely related lineages found in cases and contacts
- d Possible transmission in high-risk community and orphanage settings

Circulating Vaccine-Derived Poliovirus Outbreaks, 1988–2007

Geographic, Genetic and Temporal Distribution

Patient Characteristics: Madura cVDPV Outbreak

Case patients, no. (%)

	VDPV* (n=45)	WPV* (n=8)	Compatible* (n=10)
Male	21/45 (47%)	5/8 (63%)	5/10 (50%)
Age in years, median (range)	2 (0.5-14)	2.5 (1-10)	4 (1-8)
Children < 5 years	36/45 (80%)	6/8 (75%)	6/10 (60%)
Fever	42/44 (95%)	8/8 (100%)	10/10 (100%)
Asymmetry	21/45 (46%)	1/8 (13%)	2/9 (22%)
Residual paralysis	29/45 (64%)	4/5 (80%)	7/9 (78%)
OPV <3 doses	37/41(90%)	6/7 (86%)	7/8 (88%)

cVDPV "Lessons"

- cVDPVs can become endemic (Egypt, ~1983–93)
- cVDPVs of same serotype can repeatedly emerge (Madagascar, 2001–02; 2005)
- cVDPVs can emerge in isolated communities with low rates of vaccine coverage (Guizhou, CHN, 2004; Madura, INO, 2005–06; [Minnesota, USA, 2005])
- cVDPVs and wild polioviruses of the same serotype can co-circulate (Madura, INO, 2005–06)
- Multiple cVDPV lineages can independently emerge and co-circulate (Nigeria, 2005–07)
- Vaccine/HEV-C recombination not required for VDPV circulation (Guizhou, CHN, 2004; [Minnesota, USA, 2005])
- Traditional reservoir areas warrant special concern

Primary Immunodeficiency-Associated Vaccine-Derived Poliovirus Isolates, 1962–2007

Incomplete Data: longterm excretors

(iVDPVs: 1° immunodeficiency-associated VDPVs)

39 iVDPVs (> 6 mos excretion)

3 known to excrete >5 years.

Type 2 > Type 1 > Type 3

From:

- High-income countries (22)
- Middle-income countries (15)
- Low-income countries (0)

Immunodeficiencies linked to prolonged poliovirus excretion

Ambiguous Vaccine-Derived Poliovirus Isolates, 1983–2007

Minnesota/USA PV1/VDPVs: Estimated Timeline of Infections

Global Surveillance for VDPVs

- WHO Global LabNet approach (since 2000)
 - Molecular characterization
 - PCR, real-time PCR, PCR-RFLP, or microarrays
 - Antigenic characterization
 - ITD-ELISA or neutralizing MAb
 - Discordant isolates → VP1 sequencing
 - From >20,000 vaccine-related isolates (1999--)
 - 10 independent cVDPVs (from the 10 recent outbreaks)
 - 29 independent iVDPVs
 - 18 independent aVDPVs
 - VDPVs <1% of all vaccine-related isolates

Routine OPV3 Coverage UNICEF/WHO Estimates, 2005

SOURCE: UNICEF/WHO, 2006 Global Summary

Summary

- OPV benefits currently outweigh risks in high-risk areas
- Risk profiles change with epidemiologic conditions
- VDPVs currently are rare
- High vaccine coverage prevents cVDPV emergence and spread
- iVDPVs are sporadic
 - New sensitive screening/detection methods in development
 - Effective therapies needed (new antivirals)
- Type 2 VDPVs are most frequent
- aVDPVs are probably uncategorized iVDPVs/cVDPVs
- VDPV risks are a critical component of endgame
- Routine vaccine coverage remains low in key countries